Controlled activities
Guidelines for outlet structures

This guideline relates to the design of stormwater outlets and spillways from infrastructure (including roads, buildings, constructed basins/wetlands, swales or other drainage works) into a watercourse or waterfront land. Outlet structures on waterfront land are a controlled activity under the Water Management Act 2000 (WMA). The NSW Office of Water administers the WMA and is required to assess the impact of any proposed controlled activity to ensure that no more than minimal harm will be done to waterfront land as a consequence of carrying out the controlled activity.

Waterfront land includes the bed and bank of any river, lake or estuary and all land within 40 metres of the highest bank of the river, lake or estuary.

This means a Controlled Activity Approval must be obtained from the NSW Office of Water before commencing the controlled activity.

WHAT ARE THE AIMS AND OBJECTIVES FOR OUTLET STRUCTURES?
The design and construction of stormwater outlets should aim to be ‘natural’, yet provide a stable transition from a constructed drainage system to a natural flow regime (see Figure 1).

Figure 1. ‘Natural’ outlet structure.
The design and construction footprint and extent of disturbance within the riparian corridor should be minimised even allowing for the intended discharge function to be achieved (refer to the NSW Office of Water’s Guidelines for riparian corridors).

All ancillary drainage infrastructure, such as oil/grease interceptors, sediment and litter traps, constructed wetland, detention basins or any ‘works’ requiring ongoing access or maintenance should be located outside the riparian corridor.

Water run-off from the site should be of appropriate quality and quantity before being discharged into a riparian corridor or watercourse.

Appropriate rehabilitation of disturbed areas following the installation of outlet structures should adequately restore the integrity of the riparian corridor.

WHAT SHOULD BE CONSIDERED IN THE DESIGN AND CONSTRUCTION OF OUTLET STRUCTURES?

The design and construction of outlet structures should consider, but not be limited to, the following principles:

■ Define the infrastructure route and identify the specific point of discharge. Where possible select a route along an existing cleared or disturbed area that avoids trees, preferably beyond their drip line.

■ Choose a stable section of the stream for the discharge point, preferably mid-way between bends. Alternatively, incorporate outlet discharge points into disturbed/eroded areas which are to be stabilised or rehabilitated.

■ Minimise construction footprint and proposed extent of disturbance to soil and vegetation within the watercourse or waterfront land.

■ Demonstrate that changes to the hydrology of the receiving watercourse have been assessed and there is no detrimental impact on discharge volumes and channel velocities. Discharge velocities and flow rates should mimic ‘natural’ flows and not initiate erosion.

■ Discharge from an outlet should not cause bed or bank instability.

■ Protect the bed of the watercourse below the outlet (if not bedrock), or if bed scour is likely. Consider bank material and outlet ‘jet’ effect and protect the opposite streambank if required.

■ Point outlet structure and direct discharge downstream.

■ The outlet should not protrude beyond the streambank but tie in with the adjoining bank alignment.

■ Calculate tractive stresses generated from outlet discharges and from bank full discharges to determine appropriate rock size requirements for the structure.

■ Rock rip-rap is the preferred material to provide a ‘natural’ outlet. Rip-rap should extend for the full extent of the design scour apron and adjoining flanks/streambank. Rip-rap must be appropriately ‘keyed in’ (to withstand the velocities of runoff or discharge from the site) and cut-off trenches should be provided where necessary.

■ Rip-rap should consist of durable, angular run-of-quarry rock placed over a bedding layer of angular cobbles over geotextile. Where possible, incorporate vegetation such as sedges and rushes into scour management (Figure 1) for further stability.

■ Grade scour apron to bed level of the watercourse or just below any permanent water created by any stable feature such as a rock bar within the watercourse.

■ Stabilise and rehabilitate all disturbed areas including topsoiling, revegetation/regeneration, mulching, weed control and maintenance.

WHAT INFORMATION SHOULD BE SUBMITTED FOR ASSESSMENT?

When seeking approval to outlet structures across a watercourse or waterfront land, the NSW Office of Water will rely on the above information to undertake its assessment and to determine if the activity should be approved. All works/activities within watercourses should be designed by suitably qualified persons.
The following additional information may also be required:

- Detailed design drawings which include a surveyed plan, cross sections (across the watercourse) and a long section of the watercourse showing proposed works relative to existing and proposed bed and bank profiles and water levels. The cross section is to extend to the landward limit of the identified riparian corridor. All plans MUST include a scale bar.

- Detailed plans should include a location plan, plan view, elevation view and cross section of the proposed outlet structure.

- Detailed plans of any permanent bed and bank stabilisation works for scour protection.

- Sediment and erosion control plan.

- Detailed report of pre and post construction hydraulic, hydrologic and geomorphic conditions.

- Photographs of the site should be supplied. To assist with future monitoring and reporting, all photo points should be identified by GPS coordinates or by survey - particularly for large scale earthworks or extractive industries.

- A Vegetation Management Plan prepared in accordance with the NSW Office of Water’s [Guidelines for Vegetation Management Plans](#).

- A Site Management Plan incorporating a works schedule, sequence and duration of works, contingencies (in case of flooding etc) erosion and sediment controls and proposed monitoring and reporting periods.

- Costing of all works (materials, labour) and stages of works (outlet structure installation, rehabilitation).

- Copies of other relevant approvals, for example development consent.

WILL A MAINTENANCE PERIOD BE NECESSARY?

Applicants may need to allow for a minimum maintenance period of two years after practical completion of each stage or until site is stable. The maintenance period will depend on the scope (size) and level of risk. Engineering certification may be required at the end of the maintenance period. Maintenance (until stable) includes sediment and erosion control; the replacement of any works, vegetation or areas damaged or destroyed by flows and flooding or vandalism; and any other requirements necessary to ensure a naturalised stable watercourse system is functioning by the end of the maintenance period.

WILL A SECURITY BE REQUIRED?

Applicants should note that if the likelihood of significant impact on the watercourse or waterfront land is identified, security (as bank guarantees) may be required before the controlled activity is commenced. The amount of security is usually based on the costings provided.

WHERE DO I GO FOR ADDITIONAL INFORMATION?

Find out more about controlled activities at www.water.nsw.gov.au

CONTACT US

Contact a water licensing officer at a local office listed on our website, free call the licensing information on 1800 353 104 or email information@water.nsw.gov.au